Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine.
نویسندگان
چکیده
High soil sodium (Na) is a common stress in natural and agricultural systems. Roots are usually the first tissues exposed to Na stress and Na stress-related impairment of mitochondrial function is likely to be particularly important in roots. However, neither the effects of NaCl on mitochondrial function, nor its protection by several potential adaptive mechanisms, have been well studied. This study investigated the effects of NaCl stress on maize (Zea mays) mitochondrial electron transport and its relative protection by osmoprotectants (proline, betaine, and sucrose), antioxidants (ascorbate, glutathione, and alpha-tocopherol), antioxidant enzymes (catalase and Cu/Zn-superoxide dismutase), and mitochondrial small heat shock proteins (sHsps). We demonstrate that Complex I electron transport is protected by antioxidants and sHsps, but not osmoprotectants, whereas Complex II is protected only by low concentrations of proline and betaine. These results indicate that NaCl stress damaged Complex I via oxidative stress and suggests that sHsps may protect Complex I as antioxidants, but NaCl damaged Complex II directly. This is the first study to demonstrate that NaCl stress differentially affects Complex I and II in plants and that protection of Complex I and II during NaCl stress is achieved by different mechanisms.
منابع مشابه
Exercise preconditioning: review
It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity,...
متن کاملCharacterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملEffect of enviromental temperature on heat shock proteins (HSP30, HSP70, HSP90) and IGF-I mRNA expression in Sparus aurata
Ambient temperature is one of the most important environmental factors affecting physiological mechanisms and biochemical reactions of living organisms. Thus the effect of ambient temperature on HSPs and IGF-I gene expression levels in the liver and muscle tissues of Sparus aurata were investigated in this research. The levels of HSPs, and IGF-I gene expression of the liver and muscle of Sparus...
متن کاملRoles of the HSP70-subunit in a eukaryotic multi-site-specific endonuclease, Endo.SceI: autophosphorylation and heat stability.
The 70 kDa heat shock proteins (HSP70) are a family of molecular chaperones that bind transiently to unfolded proteins in an ATP/ADP dependent manner. Endo.SceI comprises a unique example for mitochondrial HSP70, which exists in a stable complex with a nucleolytic subunit as a multi-site specific DNase. The HSP70-subunit in Endo.SceI was autophosphorylated by ATP in vitro. The autophosphorylati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 126 3 شماره
صفحات -
تاریخ انتشار 2001